Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 17(11): e1009885, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735454

RESUMO

Molecular insights into the selective vulnerability of retinal ganglion cells (RGCs) in optic neuropathies and after ocular trauma can lead to the development of novel therapeutic strategies aimed at preserving RGCs. However, little is known about what molecular contexts determine RGC susceptibility. In this study, we show the molecular mechanisms underlying the regional differential vulnerability of RGCs after optic nerve injury. We identified RGCs in the mouse peripheral ventrotemporal (VT) retina as the earliest population of RGCs susceptible to optic nerve injury. Mechanistically, the serotonin transporter (SERT) is upregulated on VT axons after injury. Utilizing SERT-deficient mice, loss of SERT attenuated VT RGC death and led to robust retinal axon regeneration. Integrin ß3, a factor mediating SERT-induced functions in other systems, is also upregulated in RGCs and axons after injury, and loss of integrin ß3 led to VT RGC protection and axon regeneration. Finally, RNA sequencing analyses revealed that loss of SERT significantly altered molecular signatures in the VT retina after optic nerve injury, including expression of the transmembrane protein, Gpnmb. GPNMB is rapidly downregulated in wild-type, but not SERT- or integrin ß3-deficient VT RGCs after injury, and maintaining expression of GPNMB in RGCs via AAV2 viruses even after injury promoted VT RGC survival and axon regeneration. Taken together, our findings demonstrate that the SERT-integrin ß3-GPNMB molecular axis mediates selective RGC vulnerability and axon regeneration after optic nerve injury.


Assuntos
Axônios , Regeneração Nervosa , Doenças do Sistema Nervoso/metabolismo , Células Ganglionares da Retina/citologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...